Highly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide
author
Abstract:
A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning Electron Microscopy (FESEM) and UV-vis. Electrochemical behavior of modified electrode was analyzed by cyclic voltammetry (CV) and chronoamperometry (CA) techniques. CVs of AuNPs-PANI-ErGO/Au, PANI-ErGO/Au and ErGO/Au electrodes showed that conductivity of AuNPs-PANI-ErGO/Au was higher than others. Nafion was used to improve selectivity of modified electrode. Nafion/AuNPs-PANI-ErGO/Au electrode represented favorable electrochemical and electrocatalytic behavior towards NO oxidation. The resultant electrode exhibited a high sensitivity of 0.113 μA/μM over a wide linear range from 0.8 × 10−6 to 86 × 10−6 M with a low detection limit of 2.5 × 10−7 M (S/N=3). In addition, the sensor had excellent stability, as well as reproducibility and selectivity, which makes it possible to detect NO quickly and accurately.
similar resources
Amperometric Glucose Biosensor Based on Integration of Glucose Oxidase with Palladium Nanoparticles/Reduced Graphene Oxide Nanocomposite
We report on a new type of amperometric glucose biosensor that was made by integration of glucose oxidase (GOD) with palladium nanoparticles/reduce graphene oxide (Pd/RGO) nanocomposite. The Pd/RGO was prepared by a onestep reduction method in which the palladium nanoparticles and the reduced graphene oxide (RGO) were simultaneously accomplished from the reduction of dispersed solution of PdCl2...
full textSensitive electrochemical detection of nitric oxide based on AuPt and reduced graphene oxide nanocomposites.
Since nitric oxide (NO) plays a critical role in many biological processes, its precise detection is essential toward an understanding of its specific functions. Here we report on a facile and environmentally compatible strategy for the construction of an electrochemical sensor based on reduced graphene oxide (rGO) and AuPt bimetallic nanoparticles. The prepared nanocomposites were further empl...
full textAmperometric Determination of Ascorbic Acid in Pharmaceutical Formulations by a Reduced Graphene Oxide-cobalt Hexacyanoferrate Nanocomposite
Investigation of the redox properties of drugs and their determination are performed by electrochemical techniques. Data obtained from electrochemical techniques are often correlated with molecular structure and pharmacological activity of drugs. In this regard, different modified electrodes were applied as sensors for quantification of different drugs.A nanocomposite of reduced graphene oxide-...
full textAmperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite
An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoe...
full textA novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of l-lactate tumor biomarker.
In this work, a novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide (RGO-AuNPs) and l-lactate dehydrogenase (LDH) was developed for the sensing of l-lactate. Firstly, the RGO-AuNPs modified screen printed electrodes were tested for NADH detection showing a wide dynamic range and a low detection limit. Next, the biosensor was constructed by incorporating b...
full textAmperometric Determination of Ascorbic Acid in Pharmaceutical Formulations by a Reduced Graphene Oxide-cobalt Hexacyanoferrate Nanocomposite
Investigation of the redox properties of drugs and their determination are performed by electrochemical techniques. Data obtained from electrochemical techniques are often correlated with molecular structure and pharmacological activity of drugs. In this regard, different modified electrodes were applied as sensors for quantification of different drugs.A nanocomposite of reduced graphene oxide-...
full textMy Resources
Journal title
volume 31 issue 2
pages 188- 195
publication date 2018-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023